Prove that, sin2A+cos2A=1
Step 1. Find out sinAandcosA
Let ∆ABC be right-angle triangle where AB=p,BC=qandAC=r.
In the right-angle triangle ∆ABC ,
sinA=PerpendicularHypotenuse⇒sinA=BCAC⇒sinA=qr
And,
cosA=BaseHypotenuse⇒cosA=ABAC⇒cosA=pr
Step 2. Proving sin2A+cos2A=1
Consider LHS:
LHS=sin2A+cos2A=qr2+pr2=p2+q2r2bypythagorastheorem,p2+q2=r2=r2r2=1=RHS
Thus,LHS=RHS
Hence,sin2A+cos2A=1 is proved.
Prove that limx→a+[x] =[a] for all a∈R. Also, prove that limx→1−[x]=0
Prove this identity.
If sin A + sin2 A = 1, prove that cos2 A + cos4 A = 1.