Prove the given identity by using the identity 1+cos2θ=cosec2θ:
sinA+secA2+(cosA+cosecA)2=(1+secAcosecA)2.
Verify L.H.S and R.H.S.
Let L.H.S.=(sinA+secA)2+(cosA+cosecA)2
=1cosecA+secA+1secA+cosecA2=1+secAcosecAcosecA2+1+secAcosecAsecA
=(1+secA.cosecA)2(1cosec2A+1sec2A)=(1+secA.cosecA)2(sin2A+cos2A)=(1+secA.cosecA)2[∴sin2A+cos2B=1]=R.H.S.
Hence, L.H.S.=R.H.S.
1+cot2θ1+cosecθ=cosecθ.