wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the given identity by using the identity 1+cos2θ=cosec2θ:

sinA+secA2+(cosA+cosecA)2=(1+secAcosecA)2.


Open in App
Solution

Verify L.H.S and R.H.S.

Let L.H.S.=(sinA+secA)2+(cosA+cosecA)2

=1cosecA+secA+1secA+cosecA2=1+secAcosecAcosecA2+1+secAcosecAsecA

=(1+secA.cosecA)2(1cosec2A+1sec2A)=(1+secA.cosecA)2(sin2A+cos2A)=(1+secA.cosecA)2[sin2A+cos2B=1]=R.H.S.

Hence, L.H.S.=R.H.S.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiation
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon