Prove the given identity by using the identity 1+cos2θ=cosec2θ:
1+cot2θ1+cosecθ=cosecθ.
Verify L.H.S and R.H.S
Let L.H.S.=1+cot2θ1+cosecθ
=1+cosec2θ-11+cosecθ=1+cosecθ-1=cosecθ=R.H.S.
Hence, L.H.S.=R.H.S.
sinA+secA2+(cosA+cosecA)2=(1+secAcosecA)2.