wiz-icon
MyQuestionIcon
MyQuestionIcon
11
You visited us 11 times! Enjoying our articles? Unlock Full Access!
Question

Prove the identities:
(1) a2(xb)(xc)(ab)(ac)+b2(xc)(xa)(bc)(ba)+c2(xa)(xb)(ca)(cb)=x2.

Open in App
Solution

L.H.S =a2(xb)(xc)(ab)(ac)+b2(xc)(xa)(bc)(ba)+c2(xa)(xb)(ca)(cb)

=a2(xb)(xc)(bc)(ab)(ac)(bc)+b2(xc)(xa)(ca)(bc)(ba)(ca)+c2(xa)(xb)(ab)(ca)(cb)(ab)


=[a2(bc)+b2(ca)+c2(ab)]x2[a2(b2c2)+b2(c2a2)+c2(a2b2)]x+[a2bc(bc)+b2ac(ca)+c2ab(ab)](ab)(ac)(bc)


=[a2ba2c+b2cb2a+c2ac2b]x2[a2b2a2c2+b2c2a2b2+a2c2b2c2]x+[abc(abac+bcab+acbc)](ab)(ac)(bc)


=(a2bb2a+b2ca2c+c2ac2b)x2(ab)(ac)(bc)


=(ab(ab)+c2(b2a2)+c2(ab))x2(ab)(ac)(bc)


=(ab)(abc(b+a)+c2)x2(ab)(ac)(bc)


=(ab)(abbcac+c2)x2(ab)(ac)(bc)


=(ab)(bc)(ac)x2(ab)(ac)(bc)

=x2

= R.H.S




flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiplication of Algebraic Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon