Prove the identitity: √1−sinθ1+sinθ=secθ−tanθ [3 MARKS]
Open in App
Solution
Formula: 1 Mark Proof: 2 Marks
LHS=√1−sinθ1+sinθ=√(1−sinθ)(1+sinθ)×(1−sinθ)(1−sinθ)[Rationalising the denominator] =√(1−sinθ)21−sin2θ=√(1−sinθ)2cos2θ=1−sinθcosθ=1cosθ−sinθcosθ=secθ−tanθ=RHS