We consider secθ−tanθsecθ+tanθ
=(secθ−tanθsecθ+tanθ)×(secθ−tanθsecθ−tanθ)
=(secθ−tanθ)2sec2θ−tan2θ
=(secθ−tanθ)21 (sec2θ−tan2θ=1)
=(secθ−tanθ)2=sec2θ+tan2θ−2secθtanθ
=(1+tan2θ)+tan2θ−2secθtanθ (sec2θ=1+tan2θ)
=1−2secθtanθ+2tan2θ.
Prove the identity [cosec(90∘−θ)−sin(90∘−θ)][cosecθ−sinθ][tanθ+cotθ]=1