Now, tanθ1−cotθ+cotθ1−tanθ
=tanθ1−1tanθ+1tanθ1−tanθ=tanθtanθ−1tanθ+1tanθ1−tanθ
=tan2θtanθ−1+1tanθ(1−tanθ)=tan2θtanθ−1+1(−tanθ)(tanθ−1)
=tan2θtanθ−1−1(tanθ)(tanθ−1)
=1(tanθ−1)(tan2θ−1tanθ)
=1(tanθ−1)(tan3θ−1)tanθ
=(tanθ−1)(tan2θ+tanθ+12)(tanθ−1)tanθ
(∵a3−b3=(a−b)(a2+ab+b2))
=tan2θ+tanθ+1tanθ
=tan2θtanθ+tanθtanθ+1tanθ=tanθ+1+cotθ
=1+tanθ+cotθ.