Prove the identity [cosec(90∘−θ)−sin(90∘−θ)][cosecθ−sinθ][tanθ+cotθ]=1
Now, [cosec(90∘−θ)−sin(90∘−θ)][cosecθ−sinθ][tanθ+cotθ]
=(secθ−cosθ)(cosecθ−sinθ)
(sinθcosθ+cosθsinθ)
∵cosec(90∘−θ)=secθ
∵sin(90∘−θ)=cosθ
=(1cosθ−cosθ)(1sinθ−sinθ)(sin2θ+cos2θsinθcosθ)
=(1−cos2θcosθ)(1−sin2θsinθ)(1sinθcosθ)
=(sin2θcosθ)(cos2θsinθ)(1sinθcosθ)=1