Now,
(cosecθ−sinθ)(secθ−cosθ)
=(1sinθ−sinθ)(1cosθ−cosθ)
=(1−sin2θsinθ)(1−cos2θcosθ)
=cos2θsin2θsinθcosθ=sinθcosθ (1)
Next, consider 1tanθ+cotθ
=1sinθcosθ+cosθsinθ
=1(sin2θ+cos2θsinθcosθ)
=sinθcosθ (2)
From (1) and (2), we get
(cosecθ−sinθ)(secθ−cosθ)=1tanθ+cotθ.
Note
sinθcosθ=sinθcosθ1
=sinθcosθsin2θ+cos2θ
=1sin2θ+cos2θsinθcosθ
=1sin2θsinθcosθ+cos2θsinθcosθ
=1tanθ+cotθ