wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the identity (cosecθsinθ)(secθcosθ)=1tanθ+cotθ.

Open in App
Solution

Now,
(cosecθsinθ)(secθcosθ)

=(1sinθsinθ)(1cosθcosθ)


=(1sin2θsinθ)(1cos2θcosθ)


=cos2θsin2θsinθcosθ=sinθcosθ (1)

Next, consider 1tanθ+cotθ

=1sinθcosθ+cosθsinθ

=1(sin2θ+cos2θsinθcosθ)

=sinθcosθ (2)

From (1) and (2), we get

(cosecθsinθ)(secθcosθ)=1tanθ+cotθ.

Note

sinθcosθ=sinθcosθ1

=sinθcosθsin2θ+cos2θ

=1sin2θ+cos2θsinθcosθ

=1sin2θsinθcosθ+cos2θsinθcosθ

=1tanθ+cotθ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon