wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the identity:
(i) cot A+tan Bcot B+tan A=cot A tan B
(ii) 1+tan2 θ1+cot2 θ=(1tan θ1cot θ)2 [4 MARKS]

Open in App
Solution

Each Part: 2 Marks

(i) LHS=cot A+tan Bcot B+tan A=(1tan A)+tan B(1tan B)+tan A=(1+tan A tan B)tan A×tan B(1+tan A tan B)=cot A tan B=RHS

(ii)LHS=1+tan2 θ1+cot2 θ=sec2 θcosec2 θ=sin2 θcos2 θ=tan2 θRHS=(1tan θ1cot θ)2=[1(sin θcos θ)1(cos θsin θ)]2=[cos θsin θcos θsin θcos θsin θ]2=[(sin θcos θ)cos θ×sin θ(sin θcos θ)]2=sin2 θcos2 θ=tan2 θ
LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios_Tackle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon