Let y−z=a,z−x=b,x−y=c, so that a+b+c=0
Then, we have to prove that, (a2+b2+c2)3−54a2b2c2=2(b−c)2(c−a)2(a−b)2
L.H.S.=(a2+b2+c2)3−54a2b2c2
=(a2+b2+a2+b2+2ab)3−54(a2b2(a+b)2) ....... [∵a+b+c=0]
=[2(a2+b2+ab)]3−54(a2b2(a+b)2)
=8(a2+ab+b2)3−54(a2b2(a+b)2)
=8{(a−b)2+3ab}3−54a2b2{(a−b)2+4ab}
=8(a−b)6+72ab(a−b)4+162a2b2(a−b)2
=2(a−b)2{2(a−b)2+9ab}2
=2(a−b)2(2a2+5ab+2b2)2
=2(a−b)2(2a+b)2(a+2b)2
=2(a−b)2(a−c)2(b−c)2=R.H.S.[∵a+b+c=0]
Hence Proved