wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the identity : [tanθ/ (secθ + 1)] + [cotθ/ (cosecθ + 1)] = cosecθ + secθ - secθ.tanθ

Open in App
Solution

LHS = tan θsec θ + 1 + cot θcosec θ + 1=sin θcos θ1cos θ + 1 + cos θsin θ1sin θ + 1=sin θ1 + cos θ + cos θ1 + sin θ=sin θ1 + cos θ×1 - cos θ1 - cos θ + cos θ1 + sin θ×1 - sin θ1 -sin θ=sin θ1 - cos θ1 - cos2θ + cos θ1 - sin θ1 - sin2θ=sin θ1 - cos θsin2θ + cos θ1 - sin θcos2θ=1 - cos θsin θ + 1 - sin θcos θ=1sin θ - cos θsin θ + 1cos θ - sin θcos θ =1sin θ + 1cos θ - cos θsin θ + sin θcos θ=cosec θ + sec θ - cos2θ + sin2θsin θ . cos θ=cosec θ + sec θ - 1sin θ . cos θ=cosec θ + sec θ - cosec θ . sec θ =RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon