P(n):11.2.3+12.3.4+13.4.5+...+1n(n+1)(n+2)=n(n+3)4(n+1)(n+2)forn=1,wehaveP(1):11.2.3=1(1+3)4(1+1)(1+2)=1.44.2.3=11.2.3,whichistrueLet,P(k)betrueforsomepositiveintegerk,i.e.,P(k):11.2.3+12.3.4+13.4.5+...+1k(k+1)(k+2)=k(k+3)4(k+1)(k+2).........(1)weshallnowprovethatP(k+1)istrueconsiderP(k+1):[11.2.3+12.3.4+13.4.5+...+1k(k+1)(k+2)]+1(k+1)(k+2)(k+3)=k(k+3)4(k+1)(k+2)+1(k+1)(k+2)(k+3).................using(1)=1(k+1)(k+2){k(k+3)4+1(k+3)}
=1(k+1)(k+2){k(k+3)2+44(k+3)}=1(k+1)(k+2){k(k2+9+6k)+44(k+3)}=1(k+1)(k+2){k3+9k+6k2+44(k+3)}=1(k+1)(k+2){k3+2k2+k+4k2+8k+44(k+3)}=1(k+1)(k+2){k(k2+2k+1)+4(k2+2k+1)4(k+3)}=1(k+1)(k+2){k(k+1)2+4(k+1)24(k+3)}=(k+1)2(k+4)4(k+3)(k+1)(k+2)=(k+1){(k+1)+3}4{(k+1)+1}{(k+1)+2}Thus,P(k+1),istruewheneverP(k)istrue