Prove x=nπ+(−1)n.π2 or x=(nπ+3π4), where m, n∈I
The given equation becomes
(sin x -1)(sin x +cos x)=0
⇒ sin x=1 or tan x =-1
⇒sin x=sin π2 or tan x=tan3π4
⇒x=nπ+(−1)nπ2 or x=mπ+3π4, where m, n∈I.
x=nπ+3π4 or x=mπ+tan−112, where m, n∈I
Prove x=nπ2 or x=(mπ2+3π8), where m, n∈I
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12