The correct option is C H.P
Let P=(at2,2at)∴P′=(at2,−2at)
S=(a,0),L=(a,2a)
Now SP=√(a−at2)2+(2at)2=a+at2
SP′=
⎷(a−at2)2+(−2at)2=a+at2=a+at2t2
Now clearly 1SP+1SP′=2SL
Hence SP,SL,SP are in H.P
In this case only origin has been shifted. But the property of the parabola will remain same.