wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Pump A can fill a tank of water in 5 hours.

Pump B fills the same tank in 8 hours.

How long does it take the two pumps working together to fill the tank?


Open in App
Solution

Step-1: Calculating the rate of flow:

Let the Volume of the tank be x.

Given,

The pump A can fill a tank of water in 5 hours

The pump B fills the same tank in 8 hours

For one hour pump Afill one-fifth of the volume of the tank

Flow rate =volumetimex5

For one hour pump B fill one-eighth of the volume of the tank

x8

The flow rate of two pumps working together is

x5+x8=8x+5x40takingl.c.mindenominator=13x40(i)

Step-2: Finding the number of hours to fill the tank when two pumps working together

We know that,

Flow rate =volumetimeQ=Vt

Equating the equation (i) with this

Vt=13x40xt=13x40V=xt=40x13xt=3.08

Therefore, it takes 3.08 hours to fill the tank when two pumps work together.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Total Surface Area of a Cuboid
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon