Put <or> in box
1113÷31297÷225
Step 1 : Solve LHS
1113÷312=1113÷72=1113×27=2291
Step 2 : Solve RHS
97÷225=97÷125=97×512=4584
Step 3 : On comparing LHS and RHs, we get
LCM91,84=1092
⇒2291=22×1291×12=2641092And⇒4584=45×1384×13=5851092
Here, 264<585
LHS<RHS
Hence, 1113÷312<97÷225
Verify the following :
(i) 37×(56+1213)=(37×56)+(37×1213) (ii) −154×(37+−125)=(−154×37)+(−154×−125) (iii) (−83+−1312)×56=(−83×56)+(−1312×56) (iv) −167×(−89+−76)=(−167×−89)+(−167×−76)
Put > or < sign in the boxes:
(7)2▭(2)7
Put <or>in box
145÷9167÷8
Put <or> in box20÷4516÷12
Complete the table and find using the table the solution of the equation, z3=4