If the HCF of 79 and 97 is expressible in the form 97n−79m ,then the value of m−n=?
Using Euclid's Division Lemma,
⇒97=79×1+18 or 18=97−79 ...(i)
⇒79=18×4+7 or 7=79−(18×4)...(ii)
⇒18=7×2+4 or 4=18−(7×2)...(iii)
⇒7=4×1+3 or 3=7−4...(iv)
⇒4=3×1+1 or 1=4−3...(v)
⇒3=1×3+0...(vi)
Therefore HCF of 97 and 79 is 1.
Now, using (v)
⇒1=4−3
⇒1=4−(7−4) or 1=4×2−7 [using (iv)]
⇒1=[18−(7×2)]×2−7 [using (iii)]
or
18×2+7×(−5)
18×2+(79−(18×4))×(−5) [using (ii)]
⇒1=18×22+79×(−5) [using (i)]
or
(97−79)×22+79×(−5)
⇒1=97×22+79×(−27)
or
97×22−79×27
Thus, m=27 and n=22 and therefore
m−n=5