Q is a point on the auxiliary circle of an ellipse. P is the corresponding point on ellipse. N is the foot of perpendicular from focus S, to the tangent of auxillary circle at Q. Then
SP = SN
P=(a cos θ, b sin θ)
Q=(a cos θ, a sin θ)
Tangent at Q is (y−a sin θ)=−1tan θ(x−a cos θ)
x+y tan θ−acos θ=0 and (ae,0)
∴SN=ae−acos θ√1+tan2 θ=|ae cos θ−a|
SP=√(ae−a cos θ)2+b2 sin2 θ
=√a2e2+a2 cos2θ−2a2e cosθ+a2 sin2θ−a2e2sin2θ
=√a2e2 cos2θ−2a2e cosθ+a2=|ae cos θ−a|
∴ SP = SN