wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Q. The greatest four-digit number which when divided by 12, 16 and 24 leave remainders 2, 6 and 14 respectively, is

Q. सबसे बड़ी चार अंकों की संख्या जो क्रमशः 12, 16 और 24 अवकाशों से विभाजित होती है, क्रमशः 2, 6 और 14 है

A
9998
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
9984
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
9974
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
9886
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 9974

Explanation: The number, when divided by 12, 16 and 24 leave remainders 2, 6 and 14 respectively. So, if we add 10 to the number, the number will become a multiple of 12, 16 and 24 A multiple of LCM of 12, 16 and 24 (48 is the LCM)

N + 10 = 48k

N = 48k – 10

When k = 21,

Largest 4 digit multiple of 48 is 9984

N = 9984-10 = 9974

व्याख्या: संख्या, जब 12, 16 और 24 से विभाजित होती है, क्रमशः 2, 6 और 14 को छोड़ देती है। इसलिए, यदि हम संख्या में 10 जोड़ते हैं, तो संख्या 12, 16 और 24 से विभाज्य हो जाएगी। 12, 16 और 24 के LCM का एक गुणक (48 LCM है)

N + 10 = 48 K

N = 48k - 10

जब k = 21,

48 का सबसे बड़ा 4 अंक का गुणांक 9984 है

N = 9984-10 = 9974


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Miscellaneous Concepts
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon