Clearlyzq−zp=λ a λ ϵ R ⇒ zq=zp+λ a Putting it in the equation of line ,we get a(¯zp+λ a)+¯a(zp+λ a)+b=0 ⇒ a¯zP+¯azp+b=2 λ a ¯a=0 ....(i) We also have ¯zp¯a−zp¯a−λ a¯a=0 ...........(ii) From(i)+2(ii),we get 2¯zq¯a+a¯zp−zp¯a+b=0
If the line ax + by + c=0 is a normal to the curve xy=1, then