Q14. If α,β are the zeros of polynomial fx=x2-px+1-c then α+1β+1 is equal to:
c-1
1-c
c
1+c
Solution:
Step 1: Relation between zeroes and Coefficient:
Given: f(x)=x2-px+1-c with zeroes αandβ.
f(x)=x2-px-(p+c)
sumofzeroes:a+β=-(-p)1=p[∵sumofzeroes=-coefficientofxcoefficientofx2]
productofzeroes:αβ=-(p+c)1=-(p+c)[∵productofzeroes=constanttermcoefficientofx2]
Step 2: Finding the value of given expression:
α+1β+1=αβ+α+β+1=-p+c+p+1=-p-c+p+1=1-c
Final answer: The correct answer is option(B).