Let xcosα=ycos(α−2π3)=ycos(α+2π3)=k
Now, x=kcosα
y=kcos(α−2π3)
z=kcos(α+2π3)
Now, x+y+z=kcosα+kcos(α−2π3)+kcos(α+2π3)
x+y+z=kcosα+kcosαcos2π3+ksinαsin2π3+kcosαcos2π3−ksinαsin2π3
x+y+z=kcosα+2kcosαcos2π3
x+y+z=kcosα+2kcosα(−12)
Hence, x+y+z=0