Question 1
A park, in the shape of a quadrilateral ABCD, has ∠C=90∘, AB=9 m, BC=12 m, CD=5 m and AD=8 m. How much area does it occupy?
Let us join BD.
In ΔBCD, applying Pythagoras theorem,
BD2=BC2+CD2=(12)2+(5)2=144+25BD2=169BD=±√169=±13 m=13 m(side cannot be negative)Area of ΔBCD=12×BC×CD=(12×12×5)m2=30 m2ForΔABD,s = Perimeter2=(9+8+13)2=15 mBy Heron's formulaArea of triangle = √s(s−a)(s−b)(s−c)Area of ΔABD=√s(s−a)(s−b)(s−c)=⌊√15(15−9)(15−8)(15−13)⌋m2=(√15×6×7×2)m2=6√35m2=(6×5.916) m2=35.496 m2Area of the park = Area of ΔABD+Area of ΔBCD=(35.496+30) m2=65.496 m2=65.5 m2(approximately)