The answer is (B).
i) Firstly, we use the formula sinθ=√1−cos2θ to get the value of sinθ
ii) Second, we use the formula tanθ=sinθcosθ to get the value of tanθ
Given, cosA=45
∴ sinA=√1−cos2A
[∵sin2A+cos2S=2∴sinA=√1−cos2A]
√1−(45)2=√1−1625=√925=35
Now, tanA=sinAcosA=3545=34
Hence, the required value of tan A is 34