(A1)−(B4)
2, - 2, - 6, - 10, ...
Here, common difference, d = - 2 - 2 = - 4
(A2)−(B5)
∵ an=a+(n−1)d
⇒ 0 = -18 + (10 - 1)d
18 = 9d
∴ Common difference, d = 2
(A3)−(B1)
∵ a10=6
⇒ a + (10 - 1)d = 6
⇒ 0 + 9d = 6 [∵ a = 0 (given)]
⇒ 9d=6⇒d=23
(A4)−(B2)
because~a_2=13\)
⇒ a+(2−1)d=13 [∵ an=a+(n−1)d]
⇒ a+d=13 ⋯(i)
and a4=3⇒a+(4−1)d=3
∴ a+3d=3 ⋯(ii)
On subtracting eq.(i) from eq.(ii), we get;
2d = -10
⇒ d = -5
∴ (A1)→(B4),(A2)→(B5), (A3)→(B1) and (A4)→(B2)