7x−2yxy=5
⇒7xxy−2yxy=5
⇒7y−2x=5....(i)
8x+7yxy=15
⇒8xxy+7yxy=15
⇒8y+7x=15...(ii)
Putting 1x=p and 1y=q in (i) and (ii) we get,
7q - 2p = 5 ... (iii)
8q + 7p = 15 ... (iv)
Multiplying equation (iii) by 7 and multiplying equation (iv) by 2 we get,
49q - 14p = 35 ... (v)
16q + 14p = 30 ... (vi)
Now, adding equation (v) and (vi) we get,
49q - 14p + 16q + 14p = 35 + 30
⇒ 65q = 65
⇒ q = 1
Putting the value of q in equation (iv),
8 + 7p = 15
⇒ 7p = 7
⇒ p = 1
Now, p=1x=1
⇒1x=1
⇒x=1 also,
q=1=1y
⇒1y=1
⇒y=1
Hence, x =1 and y = 1 is the solution.