Question 1 (viii)
Solve the following pairs of equations by reducing them to a pair of linear equations:
13x+y+13x−y=34
12(3x+y)−12(3x−y)=−18
13x+y+13x−y=34
12(3x+y)−12(3x−y)=−18
Substituting 13x+y=p and 13x−y=q in the given equations, we get
p+q=34...(i)
p2−q2=−18
p−q=−14...(ii)
Adding (i) and (ii), we get
2p=34−14
2p=12
p=14
Substituting the value in equation (ii), we get
14−q=−14
q=14+14=12
p=13x+y=14
3x+y=4...(iii)
q=13x−y=12
3x−y=2...(iv)
Adding equations (iii) and (iv), we get
6x=6
x=1...(v)
Putting the value in equation (iii), we get
3(1)+y=4
y=1
Hence, x = 1 and y = 1