Given that, sin θ+cos θ=p……(i)
And, sec θ+cosec θ=q
⇒1cos θ+1sin θ=q[∵sec θ=1cos θ and cosec θ=1sin θ]
⇒sin θ+cos θsin θ.cos θ=q
⇒psin θ.cos θ=q [from Eq. (i)]
⇒sin θ.cos θ=pq [from Eq. (i)...(ii)]
sin θ+cos θ=p
On squaring both sides, we get;
(sin θ+cos θ)2=p2
⇒(sin2 θ+cos2 θ)+2 sin θ.cos θ=p2 [∵(a+b)2=a2+2ab+b2]]
⇒1+2 sin θ.cos θ=p2[∵sin2 θ+cos2 θ=1]
⇒1+2.pq=p2 [from Eq. (ii)]
⇒q+2p=p2q⇒2p=p2q−q
⇒q(p2−1)=2p