wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Question 10
If sin θ+cos θ=p and sec θ+cosec θ=q, then prove that q(p21)=2p.

Open in App
Solution

Given that, sin θ+cos θ=p(i)

And, sec θ+cosec θ=q

1cos θ+1sin θ=q[sec θ=1cos θ and cosec θ=1sin θ]

sin θ+cos θsin θ.cos θ=q

psin θ.cos θ=q [from Eq. (i)]

sin θ.cos θ=pq [from Eq. (i)...(ii)]

sin θ+cos θ=p

On squaring both sides, we get;

(sin θ+cos θ)2=p2

(sin2 θ+cos2 θ)+2 sin θ.cos θ=p2 [(a+b)2=a2+2ab+b2]]

1+2 sin θ.cos θ=p2[sin2 θ+cos2 θ=1]

1+2.pq=p2 [from Eq. (ii)]

q+2p=p2q2p=p2qq

q(p21)=2p

flag
Suggest Corrections
thumbs-up
149
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon