Triangles on the Same Base and between the Same Parallels
Question 10In...
Question
Question 10 In the figure, ABCD and AEFD are two parallelograms. Prove that ar(ΔPEA)=ar(ΔQFD)
.
Open in App
Solution
In quadrilateral PQDA, AP || DQ [In parallelogram ABCD, AB || CD] PQ || AD [in parallelogram AEFD, PE || AD]
then, Quadrilateral PQDA is parallelogram. Also, parallelogram PQDA and AEFD are on the same base AD and between the same parallels AD and EQ. ∴ar ( parallelogram PQDA) = ar (parallelogram AEFD) On subtracting ar (quadrilateral APFD) from both sides, we get, ar (parallelogram PQDA) - ar (quadrilateral APFD) = ar (parallelogram AEFD) - ar (quadrilateral APFD) ⇒ar(ΔQFD)=ar(ΔPEA)