Question 11.
(x2+1)2−x2 = 0 has:
(a) four real roots
(b) two real roots
(c) no real roots
(d) one real roots
Option (C)
Given, (x2+1)2−x2 = 0
⇒(x2+1)2=x2
Square root on both sides. We get,
x2+1=x or x2+1=−x
⇒x2−x+1=0 or x2+x+1=0
discriminant for the above equations will be;
1-4 = -3 <0 or 1-4=-3 <0
Hence, (x2+1)2−x2 = 0 has no real roots.