wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Question 12
Prove that 1+sec θtan θ1+sec θ+tan θ=1sin θcos θ

Open in App
Solution

LHS=1+sec θtan θ1+sec θ+tan θ

=1+1cos θsin θcos θ1+1cos θ+sin θcos θ[sec θ=1cos θ and tan θ=sin θcos θ]

=cos θ+1sin θcos θ+1+sin θ=(cos θ+1)sin θ(cos θ+1)+sin θ=2 cos2θ22 sinθ2.cosθ22 cos2θ2+2 sin θ2.cos θ2

[1+cos θ=2 cos2 θ2 and sin θ=2 sin θ2.cos θ2]

=2 cos2 θ22 sin θ2.cos θ22 cos2 θ2+2 sin θ2.cos θ2=2 cos θ2(cos θ2sin θ2)2 cos θ2(cos θ2+sin θ2)

=cos θ2sin θ2cos θ2+sin θ2×(cos θ2sin θ2)(cos θ2sin θ2) [by rationalization]

=(cos θ2sin θ2)2(cos2 θ2sin2 θ2)

[(ab)2a2+b22ab and (ab)(a+b)=(a2b2)]

=(cos2 θ2+sin2 θ2)(2 sin θ2.cos θ2)cos θ [cos2 θ2sin2 θ2=cos θ]

=1sin θcos θ [sin2 θ2+cos2 θ2=1]

=RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon