Question 12
The diagonals AC and BD of a parallelogram ABCD intersect each other. The point O. If ∠DAC=32∘and∠AOB=70∘,then∠DBC is equal to
(A) 24∘
(B) 86∘
(C) 38∘
(D) 32∘
Open in App
Solution
Given, ∠AOB=70∘and∠DAC=32∘
∴∠ACB=32∘ [AD || BC and AC is transversal]
Now, ∠AOB+∠BOC=180∘ [Linear pair axiom] ⇒∠BOC=180∘−∠AOB=180∘−70∘=110∘
Now, in ΔBOC, we have ∠BOC+∠BCO+∠OBC=180∘ [ by angle sum property of a triangle] ⇒110∘+32∘+∠OBC=180∘[∵∠BCO=∠ACB=32∘]⇒∠OBC=180∘–(110+32)∘=38∘ ∴∠DBC=∠OBC=38∘