Given,
AC=8 cm,AD=3 cm and
∠ACB=∠CDA
From the figure,
∠CDA=90∘
∴∠ACB=90∘
In right angled
ΔADC,
AC2=AD2+CD2 (by using pythagoras theorem)
⇒(8)2=(3)2+(CD)2
⇒64−9=CD2
⇒CD=√55 cm
In
ΔCDB and
ΔADC,
∠BDC=∠ADC [each 90∘]
∠DBC=∠DCA [each equal to 90∘−∠A]
∴ΔCDB∼ΔADC
Then,
CDBD=ADCD
⇒CD2=AD×BD
∴BD=CD2AD=(√55)23=553 cm