Given, ∠MST=40∘
In ΔMST,
By the angle sum property of a triangle, ∠TMS+∠MST+∠STM=180∘
⇒∠STM=180∘−(90∘+40∘) [∵SM⊥LT,∠TMS=90∘]
=50∘
∴∠SON=∠STM=50∘ [∵ opposite angles of a parallelogram are equal]
Now, in the ΔONS,
∠ONS+∠OSN+∠SON=180∘ [angle sum property of triangle]
∠OSN=180∘−(90∘+50∘)
=180∘−140∘=40∘
Moreover, ∠SON+∠TSO=180∘
[∵ adjacent angles of a parallelogram are supplementary]
⇒∠SON+∠TSM+∠NSM+∠OSN=180∘⇒50∘+40∘+∠NSM+40∘=180∘⇒130∘+∠NSM=180∘⇒∠NSM=180∘−130∘=50∘ .