Draw a quadrilateral ABCD inscribed in a circle having centre O.
Given, ∠ADC=130∘
Since ABCD is a quadrilateral inscribed in a circle, ABCD becomes a cyclic quadrilateral.
∴ The sum of opposite angles of a cyclic quadrilateral is 180∘.
⇒ ∠ADC+∠ABC=180∘
⇒ 130∘+∠ABC=180∘
⇒ ∠ABC=50∘
Since, AB is a diameter of a circle, the angle subtended by AB to the circle is right angle.
∴ ∠ACB=90∘
In ΔABC, ∠BAC+∠ACB+∠ABC=180∘ [by angle sum property of a triangle]
∠BAC+90∘+50∘=180∘
⇒ ∠BAC=180∘−(90∘+50∘)
⇒ ∠BAC=180∘−140∘=40∘