Here, a1=0, a2=14, a3=12 and a4=34
a2−a1=14, a3−a2=12−14=14, a4−a3=34−12=14
∴ a2−a1=a3−a2=a4−a3
Since the difference between successive terms are same, it forms an AP. The next three terms are,
a5=a1+4d
=a+4(14)=1, a6=a1+5d=a+5(14)=54
a7=a+6d=0+64=32