wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Question 2
If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD show that: ar(EFGH)=12ar(ABCD).

Open in App
Solution



In parallelogram ABCD, let us join HF.
AD = BC and AD|| BC (Opposite sides of a parallelogram are equal and parallel)
AB = CD (Opposite sides of a parallelogram are equal)
12AD=12BC and AH||BF
AH = BF and AH || BF (since H and F are the mid-points of AD and BC)
Therefore, ABFH is a parallelogram.
ΔHEF and parallelogram ABFH are on the same base HF and between the same parallel lines AB and HF,
(ΔHEF)=12ar (ABFH)...(1)

Similarly , it can be proved that;
(ΔHGF)=12ar (HDCF)....(2)

On adding equations (1) and (2), we obtain;
ar(ΔHEF)+ar(ΔHGF)=12ar(ABFH)+12ar(HDCF) ar(EFGH)=12[ar(ABFH)+ar(HDCF)]
ar(EFGH)=12ar(ABCD)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon