We know that, the nth term of an AP is;
an=Sn−Sn−1
an=n(4n+1)−(n−1){4(n−1)+1} [∵Sn=n(4n+1)]
⇒an=4n2+n−(n−1)(4n−3)
⇒an=4n2+n−4n2+3n+4n−3
⇒an=8n−3
Putn=1,⇒a1=8(1)−3=5
Putn=2,⇒a2=8(2)−3=16−3=13
Putn=3,⇒a3=8(3)−3=24−3=21
Hence, the required AP is 5, 13, 21, . . .