(i) 4x2+20x+25=(2x)2+2×5×2x+(5)2
=(2x+5)2 [Using the identity, a2+2ab+b2=(a+b)2]
(ii) 9y2–66yz+121z2=(3y)2–2×3y×11z+(11z)2
=(3y–11z)2 [Using the identity, a2–2ab+b2=(a–b)2]
(iii) (2x+13)2−(x−12)2=[(2x+13)−(x−12)][(2x+13)+(x−12)]
[Using the identity,
a2–b2=(a–b)(a+b)]
=(2x−x+13+12)(2x+x+13−12)
=(x+2+36)(3x+2−36)
=(x+56)(3x−16)