(i)
(4a−b+2c)2=(4a2)+(−b)2+(2c)2+2(4a)(−b)+2(−b)(2c)+2(2c)(4a)
[Using the identity, (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
=16a2+b2+4c2–8ab–4bc+16ac
(ii)
(3a–5b–c)2=(3a)2+(−5b)2+(−c)2+2(3a)(−5b)+2(5b)(−c)+2(−c)(3a)
[Using the identity, (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
=9a2+25b2+c2–30ab−10bc–6ac
(iii)
(−x+2y−3z)2=(−x)2+(2y)2+(−3z)2+2(−x)(2y)+2(2y)(−3z)+2(−3z)(−x)
[Using the identity, (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
=x2+4y2+9z2–4xy–12yz+6xz