(i) 9x2+4y2+16z2+12xy−16yz−24xz
=(3x)2+(2y)2+(−4z)2+2(3x)(2y)+2(2y)(−4z)+2(−4z)(3x)
[Using the identity, (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
=(3x+2y−4z)2=(3x+2y−4z)(3x+2y−4z)
(ii) 25x2+16y2+4z2−40xy+16yz−20xz
=(−5x)2+(4y)2+(2z)2+2(−5x)(4y)+2(4y)(2z)+2(2z)(−5x)
[Using the identity, (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
=(−5x+4y+2z)2=(−5x+4y+2z)(−5x+4y+2z)
(iii) 16x2+4y2+9z2–16xy–12yz+24xz
=(4x)2+(−2y)2+(3z)2+2(4x)(−2y)+2(−2y)(3z)+2(4x)(3z)
[Using the identity, (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
=(4x−2y+3z)2=(4x−2y+3z)(4x−2y+3z)