Now BEDF is a quadrilateral, in which ∠BED=∠BFD=90∘
∴∠FBE=360∘−(∠FDE+∠BED+∠BFD)
=360∘−(60∘+90∘+90∘)
=360∘−240∘=120∘
Since, ABCD is a parallelogram.
∴∠ADC=120∘
Now, ∠A+∠B=180∘ [sum of two cointerior angles is 180∘]
∴∠A=180∘−∠B
=180∘−120∘[∵∠FBE=∠B]
⇒∠A=60∘
Also, ∠C=∠A=60∘
Hence, angles of the parallelogram are 60∘,120∘,60∘ and 120∘, respectively.