Let a and d be the first term and common difference of an AP, respectively.
Now, by given condition, a8=12 a2
⇒ a+7d=12(a+d) [∵ an=a+(n−1)d]
⇒ 2a+14d=a+d
⇒ a+13d=0 ...(i)
And a11=13a4+1
⇒ a+10d=13(a+3d)+1
⇒ 3a+30d=a+3d+3
⇒ 2a+27d=3
Solving the equations gives,
2(-13d) + 27d = 3
⇒ −26d+27d=3
⇒ d=3
From Eq. (i),
a + 13 (3) = 0
⇒ a = -39
∴ a15=a+14d=−39+14(3)
= -39 + 42 = 3