(2x−y+3z)(4x2+y2+9z2+2xy+3yz−6xz)
2x(4x2+y2+9z2+2xy+3yz−6xz)−y(4x2+y2+9z2+2xy+3yz−6xz)+3z(4x2+y2+9z2+2xy+3yz−6xz)
=8x3+2xy2+18xz2+4x2y+6xyz−12x2z−4x2y−y3−9yz2−2xy2
−3y2z+6xyz+12x2z+3y2z+27z3+6xyz+9yz2−18xz2
=8x3+(2xy2−2xy2)+(18xz2−18xz2)+(4x2y−4x2y)+(6xyz+6xyz+6xyz)
+(−12x2z+12x2z)−y3+(−9yz2+9yz2)+(−3y2z+3y2z)+27z3
=8x3+18xyz−y3+27z3
=8x3−y3+27z3+18xyz
Alternate method:
(2x−y+3z)(4x2+y2+9z2+2xy+3yz−6xz)
=(2x−y+3z)(2x)2+(−y)2+(3z)2−(2x)(−y)−(−y)(3z)−(2x)(3z)
=(2x)3+(−y)3+(3z)3−3(2x)(−y)(3z)
[Using the identity, (a+b+c)(a2+b2+c2−ab−bc−ca)=a3+b3+c3−3abc]
=8x3−y3+27z3+18xyz