Given, a=3+√52
Now, 1a=23+√5=23+√5×3−√53−√5
[Multiplying numerator and denominator by 3−√5]
=6−2√532−(√5)2 [Using identity, (a−b)(a+b)=a2−b2]
=6−2√59−5=6−2√54
⇒1a=2(3−√5)4=3−√52
∴a2+1a2=a2+1a2+2−2=(a+1a)2−2 [adding and subtracting 2]
=(3+√52+3−√52)2−2
=(62)2−2=(3)2−2=9−2=7