(2x−5y)3–(2x+5y)3=[(2x)3−(5y)3−3(2x)(5y)(2x−5y)]−[(2x)3+(5y)3+3(2x)(5y)(2x+5y)]
[Using the identity, (a–b)3=a3–b3–3ab(a−b) and (a+b)3=a3+b3+3ab(a+b)]
=(2x)3–(5y)3–30xy(2x–5y)–(2x)3–(5y)3–30xy(2x+5y)
=−2(5y)3–30xy(2x–5y+2x+5y)
=−2×125y3–30xy(4x)=−250y3–120x2y