Given, weight of one solid sphere,
m1=5920 g
Weight of another solid sphere,
m2=740 g
Diameter of the smaller sphere = 5 cm
∴ Radius of the smaller sphere,
r2=52, m2=740 g
We know that,
Density =Mass(M)Volume(D)
⇒Volume,V=MD
⇒V1=5920D cm3…(i)
V2=740D cm3…(ii)
On dividing eq. (i) by eq. (ii), we get,
=V1V2=(5920D)(D740) [Density of the both spheres is same]
∵ Volume of a sphere =43πr3
43πr3143πr32=5920740⇒(r1r2)3=59274
⇒(r152)3=59274 [∵r2=52 cm]
⇒r311258=59274⇒8r31125=59274
⇒r31=59274×1258=74000592=125
∴r1=5 cm
Hence, the radius of the larger sphere is 5 cm.