Let ‘h’ be the height of vertex E, corresponding to the side BD in ΔBDE.
Let ‘H’ be the height of vertex A, corresponding to the side BC in ΔABC.
In (i) , It was shown that
i.e., Ar(BDE)=14ar(ABC)
∴12×BD×h=14(12×BC×H)
⇒BD×h=14(2BD×H)
⇒BD×h=14(2BD×H)
⇒h=12H
In (iv), it was shown that ar(ΔBFE)=ar(ΔAFD).
i.e., ar(ΔBFE)=ar(ΔAFD)
=12×FD×H=12×FD×2h=2(12×FD×h)
=2ar(ΔFED)
Hence, ar (BFE) = 2ar (FED)