Let ABCD be a parallelogram field with sides AB = CD = 60m, BC = DA = 40m and diagonal BD = 80m.
Area of parallelogram ABCD = 2 (Area of ΔABD) ….(i)
Consider ΔABD,
Semi – perimeter of a triangle ΔABD,
s=a+b+c2
=AB+BD+DA2
=60+80+402=1802
=90m
∴ Area of ΔABD=√s(s−a)(s−b)(s−c) [by Heron’s formula].
=√90(90−60)(90−80)(90−40)
=√90×30×10×50
=100×3√15=300√15m2
From Eq.(i),
Area of parallelogram ABCD=2×300√15=600√15m2
Hence, the area of the parallelogram is 600√15m2